Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 182: 113-123, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38648689

RESUMO

The research pertaining to solid waste is undergoing extensive advancement, thereby necessitating a consolidation and analysis of its research trajectories. The existing biblio-studies on solid waste research (SWR) lack thorough analyses of the factors influencing its trends. This article presents an innovative categorization framework that categorizes publications from six SWR journals utilizing Source Latent Dirichlet Allocation. First analyse changes in publication numbers across main categories, subcategories, journals, and regions, providing a macro-level study of SWR. Temporal analysis of keywords supplements a micro-level study of SWR, which highlights that emerging technologies with low Technology Readiness Level receive significant attention, while studies on widespread technologies are diminishing. Additionally, this study demonstrates the substantial influence of socioeconomic factors and previous SWR publications on current and future SWR trends. Finally, the article confirms the impact of global events on SWR trends by examining the structural breakpoints of SWR and their correlation with global events.

2.
Environ Sci Technol ; 58(13): 5784-5795, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507561

RESUMO

The dietary preferences of the elderly population exhibit distinct variations from the overall averages in most countries, gaining increasing significance due to aging demographics worldwide. These dietary preferences play a crucial role in shaping global food systems, which will result in changed environmental impacts in the future such as greenhouse gas (GHG) emissions. We present a quantitative evaluation of the influence of population aging on the changes in GHG emissions from global food systems. To achieve this, we developed regional dietary coefficients (DCs) of the elderly based on the Global Dietary Database (GDD). We then reconciled the GDD with the dataset from the Food and Agriculture Organization of the United Nations (FAO) to calculate the food GHG emissions of the average population in each of the countries. By applying the DCs, we estimated the national food GHG emissions and obtained the variations between the emissions from aged and average populations. We employed a modified version of the regional integrated model of climate and the economy model (RICE) to forecast the emission trends in different countries based on FAO and GDD data. This integrated approach allowed us to evaluate the dynamic relationships among aging demographics, food consumption patterns, and economic developments within regions. Our results indicate that the annual aging-embodied global food GHG emissions will reach 288 million tonnes of CO2 equivalent (Mt CO2e) by 2100. This estimation is crucial for policymakers, entrepreneurs, and researchers as it provides insights into a potential future environmental challenge and emphasizes the importance of sustainable food production and consumption strategies to GHG emission mitigations associated with aging dietary patterns.


Assuntos
Gases de Efeito Estufa , Idoso , Humanos , Efeito Estufa , Meio Ambiente , Agricultura , Envelhecimento
3.
Waste Manag ; 178: 339-350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430748

RESUMO

Leaching of potentially hazardous substances, especially the heavy metals from Incineration Bottom Ash (IBA) is a major problem in its recyclable usage. To address this concern, treatment of IBA is indispensable before it can be reused. IBA subjected to laboratory-scale treatment typically yields clearer conclusions in terms of leaching behaviors, benefiting from the controlled laboratory environment. However, the leaching behaviors of commercially treated IBA appear to be more ambiguous due to the complex and comprehensive nature of industrial-scale treatments, where multiple treatment techniques are involved concurrently. Furthermore, treatment efficiencies vary among different plants. In this study, three types of commercially treated IBA were sampled from leading waste treatment companies in Singapore. Characterization and leaching tests were performed on the treated IBAs in both standardized and modified manners to simulate various scenarios. Besides deionized water, artificial seawater was used as a leachant in leaching tests for simulating seawater intrusion. The results reveal the promoting effect of seawater on the leaching levels of several elements from three types of treated IBA, which may require special attention for IBA application and landfill near the coast. Furthermore, the elements examined in these three types of commercially treated IBA generally comply with the non-hazardous waste acceptance criteria outlined in Council Decision, 2003/33/EC (2003), except Sb. By combining two leaching tests, the elements were categorized into different types of leaching behavior, making it possible to prepare and respond to the concerning leaching scenarios in future engineering applications.


Assuntos
Cinza de Carvão , Metais Pesados , Singapura , Incineração , Metais Pesados/análise , Conservação dos Recursos Naturais , Resíduos Sólidos/análise
4.
Chemosphere ; 350: 141186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215833

RESUMO

Increased use of bioplastics, such as polylactic acid (PLA), helps in reducing greenhouse gas emissions, decreases energy consumption and lowers pollution, but its degradation efficiency has much room for improvement. The degradation rate of electrospun PLA fibers of varying diameters ranging from 0.15 to 1.33 µm is measured during hydrolytic degradation under different pH from 5.5 to 10, and during aerobic biodegradation in seawater supplemented with activated sewage sludge. In hydrolytic conditions, varying PLA fiber diameter had significant influence over percentage weight loss (W%L), where faster degradation was achieved for PLA fibers with smaller diameter. W%L was greatest for PLA-5 > PLA-12 > PLA-16 > PLA-20, with average W%L at 30.7%, 27.8%, 17.2% and 14.3% respectively. While different pH environment does not have a significant influence on PLA degradation, with W%L only slightly higher for basic environments. Similarly biodegradation displayed faster degradation for small diameter fibers with PLA-5 attaining the highest degree of biodegradation at 22.8% after 90 days. Hydrolytic degradation resulted in no significant structural change, while biodegradation resulted in significant hydroxyl end capping products on the PLA surface. Scanning electron microscopy (SEM) imaging of degraded PLA fibers showed a deteriorated morphology of PLA-5 and PLA-12 fibers with increased adhesion structures and irregularly shaped fibers, while a largely unmodified morphology for PLA-16 and PLA-20.


Assuntos
Poliésteres , Poliésteres/química , Hidrólise , Microscopia Eletrônica de Varredura
5.
Environ Sci Technol ; 57(50): 21038-21049, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064758

RESUMO

Microplastic fibers from textiles have been known to significantly contribute to marine microplastic pollution. However, little is known about the microfiber formation and discharge during textile production. In this study, we have quantified microfiber emissions from one large and representative textile factory during different stages, spanning seven different materials, including cotton, polyester, and blended fabrics, to further guide control strategies. Wet-processing steps released up to 25 times more microfibers than home laundering, with dyeing contributing to 95.0% of the total emissions. Microfiber release could be reduced by using white coloring, a lower dyeing temperature, and a shorter dyeing duration. Thinner, denser yarns increased microfiber pollution, whereas using tightly twisted fibers mitigated release. Globally, wet textile processing potentially produced 6.4 kt of microfibers in 2020, with China, India, and the US as significant contributors. The study underlined the environmental impact of textile production and the need for mitigation strategies, particularly in dyeing processes and fiber choice. In addition, no significant difference was observed between the virgin polyesters and the used ones. Replacing virgin fibers with recycled fibers in polyester fabrics, due to their increasing consumption, might offer another potential solution. The findings highlighted the substantial impact of textile production on microfiber released into the environment, and optimization of material selection, knitting technologies, production processing, and recycled materials could be effective mitigation strategies.


Assuntos
Microplásticos , Plásticos , Têxteis , Poliésteres , Meio Ambiente , Indústria Têxtil
6.
J Hazard Mater ; 460: 132374, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683350

RESUMO

Various combined processes with pre-coagulation have been developed for biologically treated landfill leachate, but the microscopic-level processes occurring during coagulation remain largely unknown. Herein, dissolved organic matter (DOM) fate using fluorescence excitation emission matrix spectroscopy combined with parallel factor analysis and electrospray ionization coupled Fourier transform-ion cyclotron resonance mass spectrometry and concomitant heavy metal (HM) behaviors were explored at the molecular level. In addition, AlCl3 and two polyaluminum chloride (PACl) species (dominated by [AlO4Al12(OH)24(H2O)12]7+ and [(AlO4)2Al28(OH)56(H2O)26]18+, respectively) were used. The results show that all coagulants are efficient at removing DOM. PACl was found to be advantageous over AlCl3 in overcoming pH fluctuation, which is ascribed to the different dominant mechanisms, namely, entrapment and sweep flocculation for AlCl3 and charge neutralization for PACl. Consequently, PACl was more effective at removing humic substances, usually high-molecular-weight, oxygen-rich and unsaturated, than protein substances. For HM removal, PACl was likewise better and more stable, where As, Cu, Ni, Co and Hg were removed predominantly via adsorption, and Cr, Zn, Pb, Cd and Mn were removed via coprecipitation. Correlation analysis showed that humic substances tended to complex with HMs and be removed synergistically due to the ubiquitous occurrences of aromatic structures and oxygen-containing functional groups.

7.
Nat Food ; 4(3): 247-256, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118273

RESUMO

Global greenhouse gas (GHG) emissions from food loss and waste (FLW) are not well characterized from cradle to grave. Here GHG emissions due to FLW in supply chain and waste management systems are quantified, followed by an assessment of the GHG emission reductions that could be achieved by policy and technological interventions. Global FLW emitted 9.3 Gt of CO2 equivalent from the supply chain and waste management systems in 2017, which accounted for about half of the global annual GHG emissions from the whole food system. The sources of FLW emissions are widely distributed across nine post-farming stages and vary according to country, region and food category. Income level, technology availability and prevailing dietary pattern also affect the country and regional FLW emissions. Halving FLW generation, halving meat consumption and enhancing FLW management technologies are the strategies we assess for FLW emission reductions. The region-specific and food-category-specific outcomes and the trade-off in emission reductions between supply chain and waste management are elucidated. These insights may help decision makers localize and optimize intervention strategies for sustainable FLW management.


Assuntos
Gases de Efeito Estufa , Gerenciamento de Resíduos , Gases de Efeito Estufa/análise , Efeito Estufa , Carne , Dieta
8.
J Hazard Mater ; 445: 130542, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055960

RESUMO

Landfills contain significant amounts of plastic waste (PW) and microplastics (MPs). However, the contributions of various PW fragmentation processes to the quality and quantity of MPs in landfills are unclear. In this study, LDPE and EPS pieces were mixed with sand to simulate landfilled solid waste, which experienced one-dimensional abiotic compression under vertical stress of 100-800 kPa for 1-300 days. The generated MPs were stained and quantified with a fluorescent microscope. The numbers and masses of the fragmented MPs increase with the increasing compression stress and duration following linear or exponential trends. EPS has a lower stiffness than LDPE, thus generates more MPs under the same compression conditions. Stress-dependent and time-dependent fragmentation mechanisms are distinguished, the former is driven by sand-plastic porosity reduction and the latter is due to microscopic interfacial creep with minimal porosity reduction. Most of the mechanically fragmented MPs have diameters < 100 µm. The MPs size distributions follow an established power-law model, which are dependent on stress, duration, porosity reduction, and fragmentation mechanism. Our results serve as conservative estimations on long-term MPs generation in real landfills, which provide confirmative and quantitative evidence to support the previous studies reporting the varied MPs abundances and properties within landfills.

9.
J Hazard Mater ; 448: 130893, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746086

RESUMO

Identification of environmental pollutants with harmful effects is commonly conducted by non-targeted analysis (NTA) using liquid chromatography coupled with high-resolution mass spectrometry. Prioritization of possible candidates is important yet challenging because of the large number of candidates from MS acquisitions. We aimed to prioritize candidates to the exposure potential of organic chemicals by their toxicity and identification evidence in the matrix. We have developed an R package application, "NTAprioritization.R", for fast prioritization of suspect lists. In this workflow, the identification levels of candidates were first rated according to spectral matching and retention time prediction. The toxicity levels were rated according to candidates' toxicity of different endpoints or ToxPi score. Finally, the various levels of candidates were identified as Tier 1 - 5 descending in priority. For validation, we used this workflow to identify pollutants in a sludge water sample spiked with 28 environmental pollutants. The workflow reduced the candidate list of over 6,982 candidates to a final list of 2,779 compounds and prioritized them to 5 tiers (Tier 1 - 5), including 21 out of 28 spiked standards. Overall, this study shows the added value of an automated prioritization R package for the fast screening of environmental pollutants based on the NTA method.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Poluentes Ambientais/análise , Esgotos/análise , Monitoramento Ambiental/métodos
10.
Waste Manag ; 160: 69-79, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791512

RESUMO

Compressibility is one of the important engineering properties of municipal solid waste (MSW) affecting the stability and functionality of a landfill. Although the correlations between MSW properties and compression parameters have been established, they either have low accuracy and small datasets or are only limited to a few specific landfills in a region. In this study, a new method using the initial global void ratio (e0*) of MSW to estimate the compression indices is developed based on a comprehensive MSW dataset. The dataset consists of 124 sets (91 laboratory and 33 field) of MSW compression results obtained from 44 studies in 13 countries with different income levels and climate conditions. We categorized MSW as a ternary mixture with biodegradable (B), reinforcing (R), and inert (I) fractions, and suggested average specific gravity values (Gs,B = 1.20, Gs,R = 1.07, and Gs,I = 2.64), respectively. The e0* values were calculated using the initial dry unit weight (γd,0) and ternary composition of MSW. The correlations between the e0* and the immediate compression index, secondary compression index induced by mechanical creep, and secondary compression index induced by bio-compression of MSW were evidently established. The results are applicable to the MSW with B = 0-79.2 %, R = 0-54.0 %, I = 2.8-100.0 %, and γd,0 = 2.0-14.2 kN/m3. A simple flowchart was established to estimate the compression indices and strains of MSW disposed on in landfills and dumpsites in countries with different income levels.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Pressão , Fenômenos Físicos
11.
Small ; 19(14): e2206954, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599675

RESUMO

High hydrophilicity and soil fixation collectively hamper the delivery of phosphorus (P) released from conventional chemical phosphorus fertilizers (CPFs) to plant rhizosphere for efficient uptake. Here, a phosphorus nutrient nanocarrier (PNC) based on morphology-tailored nanohydroxyapatite (HAP) is constructed. By virtue of kinetic control of building blocks with designed calcium phosphate intermediates, rod-like and hexagonal prism-like PNCs are synthesized, both having satisfactory hydrophobicity (water contact angle of 105.4- 132.9°) and zeta potential (-17.43 to -58.4 mV at pH range from 3 to 13). Greenhouse experiments demonstrate that the P contents increase by up to 183% in maize rhizosphere and up to 16% in maize biomass when compared to the CPF. Due to the water potential gradient driven by photosynthesis and transpiration, both PNCs are stably transported to maize rhizosphere, and they are capable to counteract soil fixation prior to uptake by plant roots. Within the synergies of the HAP morphological characteristics and triggered phosphate starvation response, root anatomy confirms that two pathways are elucidated to enhance plant P replenishment from the PNCs. Together with structure tunability and facile synthesis, our results offer a new nanodelivery prototype to accommodate plant physiological traits by tailoring the morphology of HAP.


Assuntos
Fósforo , Raízes de Plantas , Raízes de Plantas/metabolismo , Rizosfera , Solo/química , Água , Hidroxiapatitas/metabolismo
12.
J Hazard Mater ; 448: 130860, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709739

RESUMO

Cr(VI) contamination of soil threatens the environment and reduces soil strength. Therefore, both Cr(VI) stabilization and soil reinforcement should be considered in site remediation for future construction. This study investigated a biochemical treatment process using magnesium ascorbyl phosphate (MAP) and phytase. MAP was hydrolyzed via phytase catalysis to produce ascorbic acid (AA) and MgHPO4·3H2O precipitation. The AA reduced Cr(VI) into low-toxic Cr(III), which precipitated as Cr(OH)3 and CrPO4. More than 90% of the 500 mg/kg Cr(VI) in soil was reduced by 5% MAP (wt% of soil) and 1% phytase (vol/vol of soil water) doses at the geotechnically optimal soil moisture content of 16.8%. The MgHPO4·3H2O precipitates filled soil pores and enhanced the unconfined compression strength of treated soil by more than two times. This research reports a novel and practical enzymatically induced phosphate precipitation process for the remediation of Cr(VI)-contaminated soil.

13.
Environ Pollut ; 314: 120034, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030964

RESUMO

Metal-containing solid wastes can induce serious environmental pollution if managed improperly, but contain considerable resources. The detoxification and resource recoveries of these wastes are of both environmental and economic significances, being indispensable for circular economy. In the past decades, attempts have been made worldwide to treat these wastes. Crushing and grinding-based treatments have been increasingly applied, the operating apparatus and parameters of which depend on the waste type and treatment purpose. Based on the relevant studies, the applications of crushing and grinding on four major types of solid wastes, namely spent lithium-ion batteries (LIBs) cathode, waste printed circuit boards (WPCBs), incineration bottom ash (IBA), and incineration fly ash (IFA) are here systematically reviewed. These types of solid wastes are generated in increasing amounts, and have the potentials to release various organic and inorganic pollutants. Despite of the widely different texture, composition, and other physicochemical properties of the solid wastes, crushing and grinding have been demonstrated to be universally applicable. For each of the four wastes, the technical route that involving crushing and grinding is described with the advantages highlighted. The crushing and grinding serve either mainstream or auxiliary role in the processing of the solid wastes. This review summarizes and highlights the developments and future directions of crushing and grinding-based treatments.


Assuntos
Poluentes Ambientais , Resíduos Sólidos , Cinza de Carvão , Lítio , Incineração , Metais
14.
Environ Sci Technol ; 56(15): 10567-10576, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819895

RESUMO

With the rising demands on supply chain transparency and food security, the rapid outspread of the Internet of Things (IoT) to improve logistical efficiency, and the rising penetration of sensor technology into daily life, the extensive integration of the IoT in the food sector is well anticipated. A perspective on potential life cycle trade-offs in regard to the type of integration is necessary. We conduct life cycle assessment (LCA) integrated with shelf life-food loss (SL-FL) models, showing an overall 5-fold leverage on carbon reduction, which is diet dependent and a function of income. Meat presents the highest leverage, 35 ± 11-times, owing to its high carbon footprint. Two-thirds (65%) of global sensors (1 billion) engaged in monitoring fruits and vegetables can mitigate less than 7% of the total reduced carbon emissions. Despite the expected carbon emission reductions, widespread adoption of the IoT faces multiple challenges such as high costs, difficulties in social acceptance, and regional variability in technological development. Furthermore, changes in the distribution of transportation resources and dealer service models, requirements regarding the accuracy of sensor data analysis, efficient and persistent operation of devices, development of agricultural infrastructure, and farmer education and training have all increased uncertainty. Nonetheless, the research trend in smart sensors toward smaller chips and the potential integration of machine learning or blockchain as further steps make it possible to leverage these advantages to facilitate market penetration. These insights facilitate the future optimization of the application of IoT sensors for sustainability.


Assuntos
Carbono , Abastecimento de Alimentos
15.
Sci Total Environ ; 807(Pt 3): 151084, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678364

RESUMO

The global massive consumption of disposable face masks driven by the ongoing COVID-19 pandemic has emerged as a blooming disaster to both the land and marine environment that might last for generations. Growing public concerns have been raised over the management and control of this new form of plastic pollution, and one of the proposed sustainable solution is to use renewable and/or biodegradable resources to develop mask materials in order to minimize their environmental impacts. As a representative biodegradable polymer, polylactic acid (PLA) has been proposed as a promising candidate to produce non-woven face masks instead of those fossil-based polymers. To further explore the feasibility of this alternative mask material, the present work aims to study both the hydrolytic and bio-degradation behaviors of pure PLA-derived 3-ply disposable face masks at ambient temperature. Hydrolytic degradability was investigated at different pH conditions of 2, 7 and 13 with the whole piece of face mask soaked for regular timed intervals up to 8 weeks. Weight loss study showed neutral and acidic conditions had minimal effect on PLA masks, but rapid degradation occurred under basic conditions in the first week with a sharp 25% decrease in weight that slowly tapered off, coupled with solution pH dropping from 13 to 9.6. This trend was supported by mechanical property, bacterial filtration efficiency (BFE) and particulate filtration efficiency (PFE) studies. Masks soaked in basic conditions had their modulus and tensile strength dropped by more than 50% after 8 weeks where the middle layer reached 68% and 90% respectively just after 48 h, and BFE and PFE decreased by 14% and 43% respectively after 4 weeks, which was much more significant than those in neutral and acidic conditions. Base degradation was also supported by nuclear magnetic resonance (NMR) and fourier transform infrared (FTIR), which disclosed that only the middle layer undergo major degradation with random chain scission and cleavage of enol or enolate chain ends, while outer and inner layers were much less affected. Scanning electron microscopy (SEM) attributed this observation to thinner PLA fibers for the middle layer of 3-7 µm diameter, which on average is 3 times smaller. This degradation was further supported by gel permeation chromatography (GPC) which saw an increase in lower molecular weight fragment Mw ~ 800 Da with soaking duration. The biodegradation behavior was studied under OECD 301F specification in sewage sludge environment. Similarly, degradation to the middle meltblown layer was more extensive, where the average weight loss and carbon loss was 25.8% and 25.7% respectively, double that of outer/inner spunbond layer. The results showed that the face masks did not completely disintegrate after 8 weeks, but small solubilized fragments of PLA formed in the biodegradation process can be completely mineralized into carbon dioxide without generation of secondary microplastic pollution in the environment. PLA masks are therefore a slightly greener option to consider in times of a pandemic that the world was caught unprepared; however future research on masks could be geared towards a higher degradability material that fully breaks down into non-harmful components while maintaining durability, filtration and protection properties for users.


Assuntos
COVID-19 , Humanos , Máscaras , Pandemias , Plásticos , Poliésteres , SARS-CoV-2
16.
Chemosphere ; 286(Pt 3): 131897, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399252

RESUMO

The recovery of valuable metals from the LiNi0·5Mn0·3Co0·2O2 in spent batteries deserves more attention. We report a series of feasible procedures to selectively recover the four metals (Li, Ni, Mn, and Co) using a combination of hydrometallurgical and pyrometallurgyical processes. Firstly, oxalic acid is used to dissolve Li and precipitate the other three metals in oxalate forms. It is found that under the optimal condition, about 98% of the Li is dissolved, and on average 93% of the other three metals are transformed to precipitated oxalates. The oxalates are then transformed to NiO·Mn2O3·Co3O4 by being calcinated at 723 K under atmospheric environment. The selective recovery of NiO·Mn2O3·Co3O4 can be achieved by using H2SO4 under three different conditions. The first step is to use H2SO4 to selectively dissolve CoO from the Co3O4. Then the combination of H2SO4 and ultrasound is adopted to dissolve NiO, during which the ultrasound destroys the surficial oxide film on the NiO. Afterwards, the Mn2O3 is transformed to MnO2 and Mn2+ in heated H2SO4. The Co, Ni and Mn ions are dissolved in a sequence, which facilitates their separation and recovery. As the main components of the final residual solids, Co2O3 and MnO2 present in distinctly different sizes and shapes, which are beneficial for their separation and direct usage.


Assuntos
Lítio , Níquel , Fontes de Energia Elétrica , Compostos de Manganês , Óxidos , Reciclagem
17.
Environ Pollut ; 292(Pt A): 118374, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656684

RESUMO

Ni(II) and chelated Ni(II) in wastewater are of environmental concern. This study explores the sequestration potential of structural Fe(II) in solid phase (≡Fe(II)) on Ni(II) and EDTA-Ni(II) using freshly prepared ferrous hydroxyl complex (FHC) as the Fe(II)-bearing mineral. The 1 mM Ni(II) could be completely sequestrated in 20 min by 3 mM FHC, although the sequestrated Ni(II) was partially released after 20 min. It is calculated that up to 156 mg Ni(II)/g Fe(II) can be sequestrated by ≡Fe(II) under neutral pH and anaerobic condition. According to the characterizations of the solid products, the large surface area for Ni(II) adsorption and the high ≡Fe(II) reduction capacity for Ni(II) reduction are the main contributors to the Ni(II) sequestration. After the reaction, the FHC is transformed to stable Fe-Ni layered double hydroxides. The concomitant ions can be either promotional or inhibitory to the sequestration performance depending on the ion type. The combination of FHC and Fe(III) can effectively sequestrate EDTA-Ni(II), whereas FHC alone has a low efficiency. Fe(III) substitutes Ni(II) from the EDTA-Ni(II), benefiting the subsequent Ni(II) sequestration by ≡Fe(II). This study demonstrates that ≡Fe(II) suspension is an cost-effective option for remediating Ni(II)-containing wastewater.


Assuntos
Compostos Férricos , Águas Residuárias , Compostos Ferrosos , Hidróxidos , Oxirredução
18.
Environ Sci Technol ; 55(23): 16034-16043, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788994

RESUMO

Reactive compounds, such as covalent toxicants/drugs, have their ubiquitous occurrences and are known to react with protein or DNA in human beings, but their reactions with endogenous metabolites are rarely understood. Currently, a viable platform is demanded for discovering their reaction products since their efficacy/toxicity may be altered after the reaction. We aim to develop a platform for identifying unknown abiotic or biotransformation products for these reactive compounds. Based on stable isotope-labeling (SIL) metabolomics, we have developed a novel and robust analytical platform, reactive compound transformation profiler (RTP), which can automatically analyze preannotated high-resolution mass spectrometry (LC-HRMS) data sets and uncover probable transformation products. Generally, RTP consists of four complementary steps: (1) selecting peak pairs of light and heavy-labeled products, (2) defining the "core structure mass" for possible reaction search, (3) constructing an endogenous metabolite reaction database, and (4) developing algorithms to propose the potential transformation products by searching against the database with a single-/multiple-site reaction. Its performance was validated using the reactive plasticizer bisphenol A diglycidyl ether (BADGE) in several sample matrices. This platform enabled the identification of novel transformation products while also demonstrating its capacity to filter out the false-positive signals and provide product annotation. The RTP is freely accessible at https://github.com/FangLabNTU/Reactive-Compound-Transformation-Profiler-RTP-.


Assuntos
Compostos Benzidrílicos , Plastificantes , Compostos de Epóxi , Humanos , Espectrometria de Massas
19.
Environ Int ; 155: 106701, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146765

RESUMO

Bisphenol A diglycidyl ether (BADGE)-based epoxy resin is one of the most widely used epoxy resins with an annual production amount of several million tons. Compared with all other legacy or emerging organic compounds, BADGE is special due to its toxicity and high reactivity in the environment. More and more studies are available on its analytical methods, occurrence, transformation and toxicity. Here, we provided a comprehensive review of the current BADGE-related studies, with focus on its production, application, available analytical methods, occurrences in the environment and human specimen, abiotic and biotic transformation, as well as the in vitro and in vivo toxicities. The available data show that BADGE and its derivatives are ubiquitous environmental chemicals and often well detected in human specimens. For their analysis, a water-free sample pretreatment should be considered to avoid hydrolysis. Additionally, their complex reactions with endogenous metabolites are areas of great interest. To date, the monitoring and further understanding of their transport and fate in the environment are still quite lacking, comparing with its analogues bisphenol A (BPA) and bisphenol S (BPS). In terms of toxicity, the summary of its current studies and Environmental Protection Agency (EPA) ToxCast toxicity database suggests BADGE might be an endocrine disruptor, though more detailed evidence is still needed to confirm this hypothesis in in vivo animal models. Future study of BADGE should focus on its metabolic transformation, reaction with protein and validation of its role as an endocrine disruptor. We believe that the elucidation of BADGEs can greatly enhance our understandings of those reactive compounds in the environment and human.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Compostos de Epóxi , Humanos , Estados Unidos , United States Environmental Protection Agency
20.
Sci Total Environ ; 787: 147545, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004534

RESUMO

Metal oxide nanoparticles (NPs) dissolution in water environment is an important issue with regard to their environmental behaviors. The metal ion dissolves from surface defective site, but the effect of defect abundance remains largely unknown. This study aims to reveal this effect using ZnO NPs and O vacancy as the model system. The abundance of O vacancy is modulated by using different precursors and changing calcination atmosphere and temperature. X-ray photoelectron spectroscopy characterization shows that surface O vacancy abundance is effectively modulated to be distributed in a wide range from 15.3% to 41.8%. The deviation of O/Zn mole-ratio from 1.00 is used to denote O vacancy abundance in the bulk crystal, and the deviation reaches up to 0.32. Experiments show that the kinetics and magnitude of ZnO NPs dissolution vary in H2O, which are highly dependent on O vacancy abundance. In comparison, the specific surface area and aggregation state take minor roles. Particularly, Zn2+ dissolution rate in the first hour is more linearly correlated with surface O vacancy abundance than with specific surface area. Defects and their abundances should thus be co-considered with other physicochemical properties to fully understand the dissolution behaviors of metal oxide NPs in water environment. This study is of significance in comprehensively assessing and predicting the environmental risk of metal oxide NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...